References

Al-Zamil W, Yassin S. Recent developments in age-related macular degeneration: a review. Clin Interv Aging. 2017;Volume 12:1313-1330. doi:10.2147/cia.s143508

Akwii R, Sajib M, Zahra F, Mikelis C. Role of Angiopoietin-2 in Vascular Physiology and Pathophysiology. Cells. 2019;8(5):471. doi:10.3390/cells8050471

Augustin H, Young Koh G, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin–Tie system. Nature Reviews Molecular Cell Biology. 2009;10(3):165-177. doi:10.1038/nrm2639

Bhisitkul R. Vascular endothelial growth factor biology: clinical implications for ocular treatments. British Journal of Ophthalmology. 2006;90(12):1542-1547. doi:10.1136/bjo.2006.098426

Bolinger M, Antonetti D. Moving Past Anti-VEGF: Novel Therapies for Treating Diabetic Retinopathy. Int J Mol Sci. 2016;17(9):1498. doi:10.3390/ijms17091498

Bressler S. Introduction: Understanding the Role of Angiogenesis and Antiangiogenic Agents in Age-Related Macular Degeneration. Ophthalmology. 2009;116(10):S1-S7. doi:10.1016/j.ophtha.2009.06.045

Clapp C, Thebault S, Jeziorski M, Martínez De La Escalera G. Peptide Hormone Regulation of Angiogenesis. Physiol Rev. 2009;89(4):1177-1215. doi:10.1152/physrev.00024.2009

Fiedler U, Reiss Y, Scharpfenecker M et al. Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a crucial role in the induction of inflammation. Nat Med. 2006;12(2):235-239. doi:10.1038/nm1351

Foxton R, Uhles S, Grüner S, Revelant F, Ullmer C. Efficacy of simultaneous VEGF-A/ANG-2 neutralization in suppressing spontaneous choroidal neovascularization. EMBO Mol Med. 2019;11(5). doi:10.15252/emmm.201810204

Hakanpaa L, Sipila T, Leppanen V et al. Endothelial destabilization by angiopoietin-2 via integrin β1 activation. Nat Commun. 2015;6(1). doi:10.1038/ncomms6962

Hauschildt J, Schrimpf C, Thamm K et al. Dual Pharmacological Inhibition of Angiopoietin-2 and VEGF-A in Murine Experimental Sepsis. J Vasc Res. 2019;57(1):34-45. doi:10.1159/000503787

Kienast Y, Klein C, Scheuer W et al. Ang-2-VEGF-A CrossMab, a Novel Bispecific Human IgG1 Antibody Blocking VEGF-A and Ang-2 Functions Simultaneously, Mediates Potent Antitumor, Antiangiogenic, and Antimetastatic Efficacy. Clinical Cancer Research. 2013;19(24):6730-6740. doi:10.1158/1078-0432.ccr-13-0081

Klaassen I, Van Noorden C, Schlingemann R. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res. 2013;34:19-48. doi:10.1016/j.preteyeres.2013.02.001

Mueller S, Kontos C. Tie1: an orphan receptor provides context for angiopoietin-2/Tie2 signaling. Journal of Clinical Investigation. 2016;126(9):3188-3191. doi:10.1172/jci89963

Nambu H, Nambu R, Oshima Y et al. Angiopoietin 1 inhibits ocular neovascularization and breakdown of the blood–retinal barrier. Gene Ther. 2004;11(10):865-873. doi:10.1038/sj.gt.3302230

Regula J, Lundh von Leithner P, Foxton R et al. Targeting key angiogenic pathways with a bispecific Cross MAb optimized for neovascular eye diseases. EMBO Mol Med. 2016;8(11):1265-1288. doi:10.15252/emmm.201505889

Regula J, Lundh von Leithner P, Foxton R et al. Targeting key angiogenic pathways with a bispecific CrossMAb optimized for neovascular eye disease (correction to). EMBO Mol Med. 2019;11:1-2.

Saharinen P, Eklund L, Alitalo K. Therapeutic targeting of the angiopoietin–TIE pathway. Nature Reviews Drug Discovery. 2017;16(9):635-661. doi:10.1038/nrd.2016.278

Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer. 2011;2(12):1097-1105. doi:10.1177/1947601911423031